NOM:	Prénom:	Classe:

Classe de Seconde

DEVOIR COMMUN DE MATHÉMATIQUES

Samedi 14 Mai 2016

Durée de l'épreuve : 2 H 00

Ce sujet comporte 9 pages numérotées de 1 à 9. Dès que ce sujet vous est remis, assurez-vous qu'il est complet.

Il se compose de 4 exercices. Les exercices peuvent être traités dans n'importe quel ordre.

L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur.

Le devoir est à traiter sur le sujet.

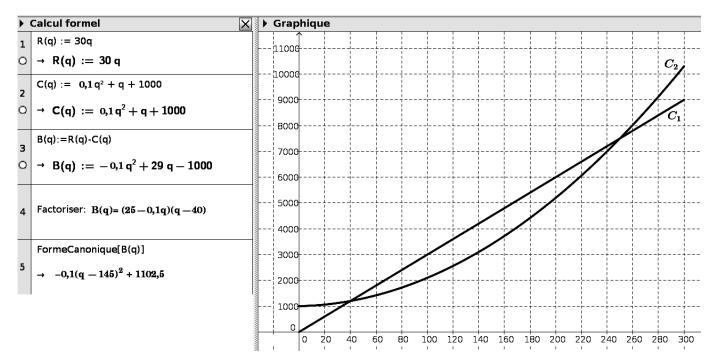
Exercice 1 (9 points):

Partie A : Étude d'un coût de production

Une entreprise artisanale locale produit et vend une boisson concentrée énergisante. Sa production est comprise entre 0 et 300 L par semaine et son coût de production a été modélisé par la fonction C définie sur [0;300] par C (q) = 0,1 $q^2 + q + 1$ 000 avec q exprimé en litres et C (q) exprimé en euro.

- 1) Déterminer le montant des coûts fixes, c'est-à-dire le coût de production lorsque q = 0.
- 2) Vérifier que C $(q) = 0.1 (q+5)^2 + 997.5$.

3) Dresser le tableau de variations de C sur ℝ tout entier et en déduire le sens de variation de C sur [0 ; 300].

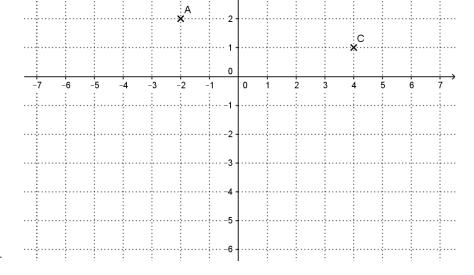

4) La semaine dernière, le coût total de production était de 5 000 €. Déterminer, à la calculatrice, la production de boisson concentrée de l'entreprise. On donnera une valeur approchée à l'unité près.

Partie B : Étude du bénéfice de l'entreprise

L'entreprise vend 30 € chaque litre de sa boisson concentrée.

La recette de l'entreprise est donc définie par la fonction R sur [0; 300] par R (q) = 30 q.

Sur le graphique ci-dessous sont représentées la fonction R et la fonction C définie dans la partie A.

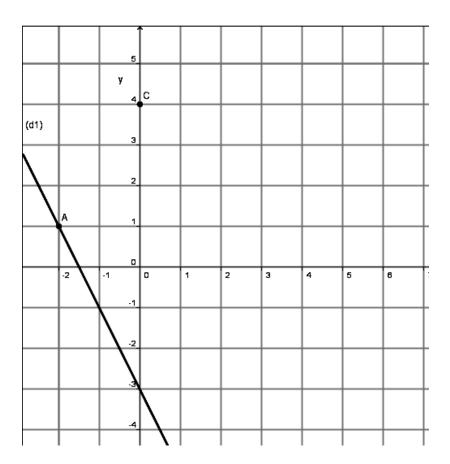

- 1) Laquelle des courbes C_1 et C_2 est la représentation graphique de la fonction R ? Justifier.
- 2) Le bénéfice B (q) de l'entreprise est défini par B (q) = R (q) C (q) (recette coût). Montrer que B (q) = -0,1 q^2 + 29 q 1 000 comme l'indique la 3^{ième} ligne du calcul formel ci-dessus.
- 3) La capture d'écran ci-dessus donne aussi l'expression factorisée de B (q) (ligne 4) et sa forme canonique (ligne 5). Pour les deux questions suivantes, on pourra utiliser ces informations. *Toute démarche même non aboutie sera valorisée.*
 - a) Sur quel intervalle de production, l'entreprise réalise-t-elle un bénéfice strictement positif?

b) Quelle production de boisson permet d'obtenir un bénéfice maximal?

Exercice 2 (10 points):

On considère un repère orthonormé (O, I, J). On considère les points $A(-2\;;2)\;$, $B(5\;;6)$ et $C(4\;;1)$. On définit les points suivants :

- D tel que ABCD est un parallélogramme.
- K et L sont les milieux respectifs de [CD] et [AB].
- M tel que $\overrightarrow{CM} = \frac{1}{3} \overrightarrow{CA}$.
- 1) Compléter la figure ci-contre, en plaçant les points D, K, L et M.


В

2) Calculer les coordonnées des points D, L et M.

3) On admet que le point K a pour coordonnées $(\frac{1}{2}; -1)$.
Par la méthode de votre choix répondre, en justifiant, aux deux questions suivantes :
a) Montrer que les points K, M et B sont alignés.

Exercice 3 (9 points):

1) Justifier que la droite (d1) représentée sur le Graphique ci-contre a pour équation y = -2 x - 3.

- 2) Tracer la droite (d2) représentative de la fonction affine g telle que g(2) = -2 et g(4) = 0.
- 3) Le point B d'ordonnée 5 se trouve sur la droite (d1). Calculer son abscisse.

4) Le point D(5 ; -14) appartient-il à la droite (d1) ? Justifier.

5) Justifier que les droites (d1) et (d2) sont sécantes.

6) Déterminer les coordonnées du point E intersection des droites (d1) et (d2).
7) Tracer la droite (d3) passant par le point C et parallèle à la droite (d1). Déterminer une équation de cette droite.
., (),

Exercice 4 (12 points): Les parties A et B sont indépendantes

En découpant un patron, Julie et Noah ont fabriqué deux dés tétraédriques réguliers et équilibrés, composés chacun de 4 faces (4 triangles équilatéraux identiques) portant les numéros - 2 ; - 1 ; 0 et 1.

Ils inventent un jeu qui consiste à lancer ces deux dés et à faire la somme des numéros situés sur les faces cachées. Ils se demandent lequel des deux événements A et B suivants a le plus de chances de se réaliser.

A: « Obtenir une somme strictement positive »

B: « Obtenir une somme impaire ».

Partie A: Calcul des probabilités

Noah propose une méthode pour déterminer les probabilités des deux événements A et B.

Il a commencé par remplir la table d'addition proposée ci-contre :

+	-2	-1	0	1
-2	-4	-3	-2	-1
-1	-3	-2	-1	0
0	-2	-1	0	1
1	-1	0	1	2

- 1) a) Déterminer alors la probabilité p(A) de réaliser l'événement A.
- b) Lequel des deux événements A et B a le plus de chances de se réaliser ? Justifier votre réponse.

- 2) a) Décrire par une phrase l'événement $A \cap B$.
- b) Déterminer la probabilité de réaliser l'événement $A \cap B$.
- 3) Déterminer, en expliquant votre démarche ou vos calculs, la probabilité de réaliser l'événement $A \cup B$.

Partie B: Une autre méthode : la simulation

Julie propose de simuler l'expérience à l'aide d'un algorithme pour déterminer la probabilité de l'événement B.

LIGNE 1	INITIALISATIONS	s prend la valeur 0
LIGNE 2		Saisir n
LIGNE 3		compteur prend la valeur 0
LIGNE 4	BOUCLE	Pour i allant de 1 à n
LIGNE 5		dé1 prend aléatoirement l'une des valeurs - 2 ; - 1 ; 0 ou 1
LIGNE 6		dé2 prend aléatoirement l'une des valeurs - 2 ; - 1 ; 0 ou 1
LIGNE 7		s prend la valeur dé1 + dé2
LIGNE 8		Si s est impair alors compteur prend la valeur compteur + 1
LIGNE 9		Fin du Si
LIGNE 10		Fin du Pour
LIGNE 11	SORTIE	Afficher compteur

¹⁾ Julie a programmé l'algorithme et a effectué une simulation avec n = 5.

Compléter le tableau suivant qui indique les valeurs de chacune des variables à chaque étape de l'algorithme.

	S	i	n	dé 1	dé 2	compteur
Après les initialisations						
À la fin de la boucle 1				- 2	- 1	
À la fin de la boucle 2				- 1	1	
À la fin de la boucle 3				0	1	
À la fin de la boucle 4				1	0	
À la fin de la boucle 5				0	- 2	
À la fin de l'algorithme						

n:	 	
s:	 	
compteur :	 	

3) Julie a indiqué dans le tableau suivant les résultats de deux autres simulations.

2) Que représente chacune des variables suivantes de l'algorithme ? Quel est leur rôle ?

n	10	10 000
compteur	9	4 913

Ces résultats sont-ils conformes avec votre résultat pour p(B) ? Justifier.

4) Quelle ligne dans l'algorithme précédent faut-il modifier pour qu'il puisse nous permettre d'estimer la probabilité de l'événement A? Donner la modification à apporter.